
MSP430 DLL Developer’s Guide 
August 2011 

1 

 MSP430 DLL Developer’s Guide 
 MSP430 

ABSTRACT 

The MSP430.dll is a Dynamic Link Library (DLL) that provides functions for controlling the 
Texas Instruments MSP430 Ultra-low Power MCU at development. The MSP430.dll 
controls the MSP430 MCU via the device’s JTAG interface, and provides device control, 
memory programming and debugging functions. The DLL provides support for the 
standard 4-wire JTAG implementation as well as the low pin count debug interface called 
Spy-bi-Wire, or 2-wire JTAG. The MSP430.dll interfaces with the device’s JTAG pins 
using a set of functions encapsulated in another Dynamic Link Library called the 
Hardware Interface Layer [HIL.dll]. The HIL.dll provides a unified API for MSP430.dll 
which abstracts the peculiarities of the physical interface to the MSP430. The described 
software layer hierarchy permits the MSP430.dll to be used with any physical interface 
(that supports the required control of the JTAG pins) by providing a corresponding HIL.dll. 
The MSP430.dll greatly simplifies the control of the MSP430, as the user is completely 
isolated from the complexities of the JTAG. This application note provides an overview of 
the MSP430.dll, how to use the DLL to control the MSP430 and supplements the 
information provided in the DLL’s C-Header files. Several sample programs that use the 
MSP430.dll to control the MSP430 are provided. 

NOTE: This application note assumes knowledge of the C language, the Dynamic Link 
Library mechanism, the MSP430, and the JTAG mechanism. 

NOTE: Refer to the MSP430 Hardware Tools User’s Guide (SLAU278) for information on 
actual hardware connection to the devices’ JTAG pins. For further details on the MSP430 
specific JTAG implementation in silicon refer to the MSP430 Memory Programming User’s 
Guide (SLAU320). 

http://www-s.ti.com/sc/techlit/slau278
http://www-s.ti.com/sc/techlit/slau320
http://www-s.ti.com/sc/techlit/slau320


MSP430 DLL Developer’s Guide 

2 MSP430 DLL Developer’s Guide 

Contents 

Abbreviations...................................... ...................................................................................... 5 

Developer’s Package Folder and File Structure ..... ............................................................... 5 

Using MSP430 DLL .................................. ................................................................................. 8 

General application and device handling ........................................................................................ 8 

Attach to a running device ............................................................................................................ 11 

Supporting more than one MSP-FET430UIF ................................................................................ 13 

Configuring the JTAG protocol ..................................................................................................... 16 

Speed up Flash Programming ...................................................................................................... 16 

Controlling device program execution .......................................................................................... 17 

Enhanced Emulation Module (EEM) Access – EEM API .............................................................. 17 

Error handling .............................................................................................................................. 17 

Miscellaneous .............................................................................................................................. 18 

Supporting MSP-FET430PIF .......................... ........................................................................ 19 

Tetradyne’s DriverX Parallel Port (LPT) Hardware Driver ............................................................. 19 

Hardware Interface Layer (HIL) Library ........................................................................................ 19 

Supporting MSP-FET430UIF .......................... ........................................................................ 21 

Virtual Com Port (VCP) Driver for MSP-FET430UIF ..................................................................... 21 

Enhancements over MSP-FET430PIF ......................................................................................... 21 

MSP-FET430UIF Firmware Update Support ................................................................................ 22 

Firmware update with Update-Tool ............................................................................................... 23 

Additional update step for MSP-FET430UIF with hardware revision 1.3 ....................................... 24 

Application Examples .............................. .............................................................................. 26 

Example ....................................................................................................................................... 26 

ExampleDebug............................................................................................................................. 26 

UifUpdate ..................................................................................................................................... 26 

MultipleUifs .................................................................................................................................. 26 

UseCases .................................................................................................................................... 26 

MSP430 Flasher .......................................................................................................................... 27 

Appendix A. Installation of DriverX ............... ........................................................................ 27 

A.1 For Win95, 98, and ME machines: ......................................................................................... 27 

A.2 For Win NT machines: ........................................................................................................... 27 

A.3 New Driver X Installation Instructions: .................................................................................... 28 

Appendix B. Installation of VCP for MSP-FET430UIF . ......................................................... 31 

B.1 OS: Windows XP 32/64 Bit, Windows Vista 32/64 Bit and Windows 7 32Bit/64 Bit ................ 32 

B.2 Driver Uninstallation: Windows XP 32/64 Bit, Windows Vista 32/64 Bit and Windows 7 32/64 
Bit ......................................................................................................................................... 36 

Appendix C. Installation of CDC for MSP-FET430UIF . ........................................................ 37 

Appendix D. Update MSP-FET430UIF with hardware revi sion 1.3 ..................................... 38  

 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 3 

Figures 
FIGURE 1 RECOMMENDED FLOW TO START AN MSP430 DEBUG SESSION ....................................... 9 
FIGURE 2 CODE EXAMPLE FOR A DEBUG SESSION START ............................................................. 10 
FIGURE 3 ATTACH TO RUNNING TARGET ..................................................................................... 11 
FIGURE 4 CODE EXAMPLE FOR “ATTACH TO RUNNING TARGET” – OPEN A DEBUG SESSION PRIOR TO 

UTILIZING THIS CODE (SEE. FIG. 2) ................................................................................................... 12 
FIGURE 5 RETRIEVE INFO ABOUT AVAILABLE MSP-FET430UIFS ................................................. 14 
FIGURE 6 CODE EXAMPLE FOR COMMUNICATION WITH MULTIPLE MSP-FET430UIFS ................... 15 
FIGURE 7 FIRMWARE UPDATE FLOW .......................................................................................... 22 
FIGURE 8 UPDATE-TOOL ........................................................................................................... 23 
FIGURE 9 WINDOWS DEVICE MANAGER (VCP) ........................................................................... 31 
FIGURE 10 DRIVER INSTALLATION PROCESS ................................................................................. 32 
FIGURE 11 DEFAULT INSTALL FOLDER .......................................................................................... 33 
FIGURE 12 SELECT COMPONENTS FOR INSTALL ............................................................................ 33 
FIGURE 13 INSTALLATION PROCESS ............................................................................................. 34 
FIGURE 14 DRIVER INSTALLATION COMPLETE ............................................................................... 34 
FIGURE 15 WINDOWS DEVICE MANAGER ..................................................................................... 35 
FIGURE 16 CONFIRM UNINSTALL .................................................................................................. 36 
FIGURE 17 DRIVER UNINSTALL .................................................................................................... 36 
FIGURE 18 NEW HARDWARE ........................................................................................................ 37 
FIGURE 19 UPDATE WIZARD ........................................................................................................ 37 
FIGURE 20 UIF REVISION 1.3 ...................................................................................................... 38 
FIGURE 21 UIF REVISION 1.4 ...................................................................................................... 39 



MSP430 DLL Developer’s Guide 

4 MSP430 DLL Developer’s Guide 

Revisions 

Table 1. Document Revision History 

Revision Date Author Notes 

0.1 06/2005 W. Lutsch Initial draft 

0.2 09/2005 W. Lutsch Added Appendix B: Installation of VCP for MSP-FET430UIF 

0.3 10/2005 W. Lutsch Added Spy-bi-Wire information 

Added Figure 5.     Configuring the JTAG protocol 

Added Abbreviations 

0.4 03/2006 W. Lutsch Added Speed up Flash Programming 

0.5 06/2006 W. Lutsch Added Supporting more than one MSP-FET430UIF 

0.6 05/29/2007 W. Lutsch Added Attach to a running device 

0.7 02/10/2009 W. Lutsch Added eZ430 tool information (both eZ430-F2013 and eZ430-RF2500, 
Supporting eZ430 emulator dongles) 

Added information about certified VCP driver (affected: Supporting MSP-
FET430UIF,  Appendix B Installation of VCP for MSP-FET430UIF) 

Added Appendix C Switching between certified and non-certified VCP 
driver 

Added UseCases 

0.8 06/16/2009 W. Lutsch Added NOTE to abstract which references to SLAU278 & SLAU265 

0.9 03/23/2010 F.Berenbrinker Added notes for new API functions and the automatic protocol scan 

1.0 08/09/2011 F.Berenbrinker Added Code Examples 

Added MSP430 Flasher as an example for MSP430.dll usage 

1.1 08/22/2011 F.Berenbrinker Remove EEMgui. Example 

Remove Appendix C 
NOTE: Page numbers for previous revisions may differ from page numbers in the current version. 

 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 5 

Abbreviations 

• MSP-FET430PIF: Official product designation of Texas Instruments MSP430 Parallel Port 
JTAG interface (LPT FET). 
http://focus.ti.com/docs/toolsw/folders/print/msp-fet430pif.html 

• MSP-FET430UIF: Official product designation of Texas Instruments MSP430 USB JTAG 
interface (USB FET). 
http://focus.ti.com/docs/toolsw/folders/print/msp-fet430uif.html 

• eZ430-F2013: Official product designation of Texas Instruments MSP430 USB Stick 
Development Tool (eZ430). 
http://focus.ti.com/docs/toolsw/folders/print/ez430-f2013.html 

• eZ430-RF2500: Official product designation of Texas Instruments MSP430 Wireless 
Development Tool (eZ430-RF). 
http://focus.ti.com/docs/toolsw/folders/print/ez430-rf2500.html 

• SBW:  Spy-bi-Wire JTAG debug interface utilized on MSP430 low pin count devices. 

• VCP: Virtual Com Port, in the context of this document Texas Instruments Virtual Com Port 
Driver for TUSB3410.\ 

• CDC: Communication Device Class 

Developer’s Package Folder and File Structure 

The MSP430.dll “system” is composed of the following folders and files. Installing the provided 
MSP430 DLL Distribution package will create the following folders and files in the selected 
installation destination directory. 

• ApplicationExamples : This folder contains a set of application examples on how to apply 
the DLL. Refer to section Application Examples for specific details on each code example. 

• Doc : This folder contains the complete API documentation of the DLL in HTML and 
Compressed HTML format as well as this document, the MSP430 DLL Developer’s Guide. 

• Driver : This folder contains according driver setup and files for 

– DriverX : Teradyne’s DriverX (refer to section 5 and Appendix A for details) used to 
support MSP-FET430PIF JTAG interface 

– VCP: TI’s VCP driver (refer to Supporting MSP-FET430UIF and Appendix B for details) 
to support MSP-FET430UIF JTAG interface. 

– CDC: TI’s CDC driver (refer to Supporting MSP-FET430UIF and Appendix C for details) 
to support MSP-FET430UIF JTAG interface. 

– INF: MS-Windows driver information file for MSP430 Application UART available with 
eZ430-RF2500 emulator dongles (refer to Supporting eZ430 emulator dongles for 
details). Refer also to the eZ430-RF2500 Development User’s Guide  (SLAU227) for 

http://focus.ti.com/docs/toolsw/folders/print/msp-fet430pif.html
http://focus.ti.com/docs/toolsw/folders/print/msp-fet430uif.html
http://focus.ti.com/docs/toolsw/folders/print/ez430-f2013.html
http://focus.ti.com/docs/toolsw/folders/print/ez430-rf2500.html
http://www-s.ti.com/sc/techlit/slau227


MSP430 DLL Developer’s Guide 

6 MSP430 DLL Developer’s Guide 

further information. 
This folder also contains a subfolder called ‘PreinstalCDC’. It again contains an example 
source code which shows how to install the driver INF file on a MS-Windows PC. Refer 
to the according Appendix sections for more information. 

 

• Inc : This folder contains all the C-Header files needed to make use of MSP430.dll. The C-
Header files document the DLL functions in detail, including the function prototypes, 
function parameters, and function return values. They also provide all typedefs, #defines, 
enumerations, and data structures required to use the DLL. 

– MSP430.h: This file is the header file for the MSP430.dll, and provides the function 
prototypes, typedefs, #defines, enumerations, and data structures for the functions of 
the DLL. This file is normally located in the same directory as your application’s source 
file, and should be #included by your application’s source file. This file is used during 
compile-time. MSP430.h is the main header file of the MSP430.dll. (refer to General 
application and device handling for more general information) 

– MSP430_Debug.h : This file is a header file for the MSP430.dll, and provides the 
function prototypes, typedefs, #defines, enumerations, and data structures for the 
debugging functions of the DLL. This file is normally located in the same directory as 
your application’s source file, and should be #included by your application’s source file. 
This file is used during compile-time. MSP430_Debug.h is the main header file of the 
debugging functions of the MSP430.dll. (refer to Controlling device program execution  
for more general information) 

– MSP430_EEM.h: This file is a header file for the MSP430.dll, and provides the function 
prototypes, typedefs, #defines, enumerations, and data structures for the enhanced  
debugging functions of the DLL. This file is normally located in the same directory as 
your application’s source file, and should be #included by your application’s source file. 
This file is used during compile-time. MSP430_EEM.h is the main header file of the 
enhanced  debugging functions of the MSP430.dll. (refer to Enhanced Emulation 
Module (EEM) Access – EEM API for more general information) 

– MSP430_FET.h: This file is a header file for the MSP430.dll, and provides the function 
prototypes, typedefs, #defines, enumerations, and data structures for MSP-FET430UIF 
maintenance functions of the DLL. This file is normally located in the same directory as 
your application’s source file, and should be #included by your application’s source file. 
This file is used during compile-time. MSP430_FET.h is the main header file of the 
MSP-FET430UIF maintenance functions of the MSP430.dll. (refer to MSP-FET430UIF 
Firmware Update Support for more general information) 

– HIL.h : This file is provided as a reference for provided HIL.dll (refer to Hardware 
Interface Layer (HIL) Library for more details) 

• Lib : This folder contains according Library files. 

– MSP430.lib : This file is the library file for the MSP430.dll, and is required to access the 
functions of the DLL. This file is normally located in the same directory as your 
application’s source file, and should be added to the Linker Object/Library Modules list 
of your application. This file is used during link-time. 

– HIL.lib : This file is the library file for the provided HIL.dll. 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 7 

• MSP430.dll : This file is the dynamic link library, and contains the device control functions. 
This file is normally located in the same directory as your application’s executable file, or in 
your computer system’s default DLL folder. This file is used during run-time. 

The MSP430.dll interfaces to the device’s JTAG pins using a set of functions encapsulated in 
another Dynamic Link Library called the Hardware Interface Layer (HIL.dll). The HIL.dll provides 
a unified API for MSP430.dll which abstracts the peculiarities of the physical interface to the 
MSP430. The described software layer hierarchy permits the MSP430.dll to be used with any 
physical interface (that supports the required control of the JTAG pins) by providing a 
corresponding HIL.dll. A HIL.dll is supplied that controls the JTAG pins via a Texas Instruments 
FET Interface Module and the parallel port of a PC. Appendix A describes how to write a HIL.dll 
for a different physical interface. 

• HIL.dll : This file is the dynamic link library, and contains the HIL functions. This file is 
normally located in the same directory as your application’s executable file, or in your 
computer system’s default folder of DLLs. This file is used during run-time. 

• revisions.txt : This file provides information about added features of dedicated versions of 
the DLL. 



MSP430 DLL Developer’s Guide 

8 MSP430 DLL Developer’s Guide 

Using MSP430 DLL 

General application and device handling 

Use of the MSP430.dll is straightforward. The functions of the DLL are sequenced as follows: 

1. The interface is initialized: MSP430_Initialize() 

2. The device Vcc is set: MSP430_GetExtVoltage()††, MSP430_VCC()†, 
MSP430_GetCurVCCT() 

3. Configuring the JTAG protocol (Spy-bi-Wire 2-Wire JTAG, 4-wire JTAG) is optional. By 
default the protocol is selected automatic: MSP430_Configure() 

4. The device is identified: MSP430_OpenDevice() 

5. Return the identified device: MSP430_GetFoundDevice 

6. The mode for verification is optionally configured: MSP430_Configure() 

7. The device memory is manipulated using: 

erase [MSP430_Erase()] 

read/write [MSP430_Memory(), MSP430_ReadOutFile(), MSP430_ProgramFile()] 

verify [MSP430_VerifyFile(), MSP430_VerifyMem(), MSP430_EraseCheck()] 

8. The device function is manipulated by: 

blowing the security fuse [MSP430_Secure()]†† 

reset [MSP430_Reset()] 

9. The device interface is closed: MSP430_Close() 

10. Errors are handled: MSP430_Error_Number(), MSP430_Error_String() 

† Function not supported by MSP-FET430PIF. This function only switches Vcc ON and OFF. 

†† Function not supported by MSP-FET430PIF. 

 

Figure 1 shows the flow when starting an MSP430 debug session as the MSP430.dll is used. 

Figure 2 shows a code example for a debug session start and error handling using 
MSP430_Error_Number() and MSP430_Error_String(). The MSP430_DLL.chm help-file in \Doc 
offers detailed information on all DLL functions and their parameters. 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 9 

MSP430_Initialize(INTERFACE, version)

MSP430_FET_FwUpdate()

MSP430_GetExtVoltage(voltage, state)

MSP430_VCC(valid VCCT)

Configure JTAG protocol

MSP430_Configure(INTERFACE_MODE,...)

Optional (default setting is automatic)

Stop the Debugger (MSP430_Close())

state = LOW_EX_POWER || 

HIGH_EX_POWER ?

version = -1 ?

state = EX_POWER_OK ?

Download Program & Debug Code

MSP430_OpenDevice(), MSP430_Erase(), 

MSP430_Memory(), MSP430_Reset(), 

MSP430_Registers(), MSP430_Run(), 

MSP430_State(),…..

no

no

no

yes

yes

yes

 

Figure 1 Recommended flow to start an MSP430 debug session 



MSP430 DLL Developer’s Guide 

10 MSP430 DLL Developer’s Guide 

 
#include "stdio.h" 
#include "MSP430_FET.h" 
#include "MSP430_Debug.h" 
 
long lVersion; // DLL version 
long verify = 0; // verify the filetransfer? 
  
// init JTAG interface. LPT1, LPT2, .., TIUSB is possible. 
printf("MSP430_Initialize()\n"); 
if (MSP430_Initialize("TIUSB", &lVersion) == STATUS_ERROR) 
{ 
 printf("Error: %s\n", MSP430_Error_String(MSP430_Error_Number())); // print error string 
 MSP430_Close(1); // close the debug session 
} 
// Check firmware compatibility 
if (lVersion == -1)  // firmware outdated? 
{ 
 // perform firmware update 
 printf("MSP430_FET_FwUpdate()\n"); 
 if(MSP430_FET_FwUpdate(NULL, NULL, NULL) == STATUS_ERROR) 
 { 
  printf("Error: %s\n", MSP430_Error_String(MSP430_Error_Number())); // print error string 
  MSP430_Close(1); // close the debug session 
 } 
} 
// power up the target device 
printf("MSP430_VCC()\n"); 
if (MSP430_VCC(3000) == STATUS_ERROR) // target VCC in millivolts 
{ 
 printf("Error: %s\n", MSP430_Error_String(MSP430_Error_Number())); // print error string 
 MSP430_Close(1); // close the debug session 
} 
// configure interface - this is optional! automatic interface selection is the default 
printf("MSP430_Configure()\n"); 
if (MSP430_Configure(INTERFACE_MODE, AUTOMATIC_IF) == STATUS_ERROR) 
{ 
 printf("Error: %s\n", MSP430_Error_String(MSP430_Error_Number())); // print error string 
 MSP430_Close(1); // close the debug session 
} 
// program .txt file into device memory 
printf("MSP430_ProgramFile()\n"); 
if (MSP430_ProgramFile("C:\file.txt", ERASE_ALL, verify) == STATUS_ERROR) 
{ 
 printf("Error: %s\n", MSP430_Error_String(MSP430_Error_Number())); // print error string 
 MSP430_Close(1); // close the debug session 
} 
// open the device 
printf("MSP430_OpenDevice()\n"); 
if (MSP430_OpenDevice("DEVICE_UNKNOWN","",0,0,DEVICE_UNKNOWN) == STATUS_ERROR) 
{ 
 printf("Error: %s\n", MSP430_Error_String(MSP430_Error_Number())); // print error string 
 MSP430_Close(1); // close the debug session 
} 
/**************************** debug session is star ted ****************************/ 

Figure 2 Code example for a debug session start 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 11 

Attach to a running device 

The MSP430.DLL offers the possibility to connect to a running MSP430 target device without 
corrupting the targets’ program execution. This can be used to debug an application code which 
has been running already for a while in the target device. Only the JTAG interface to the target 
device will be initialized. Especially, no reset of the microcontroller will be performed which might 
corrupt memory contents of the running application which could contain various information of 
interest for the debug session. 

Establishing the physical JTAG connection to the target device is not always trivial, especially 
when the RST signal of the target processor is connected to the JTAG header. A successful 
connection is subject to stable signals on the JTAG connector (a bouncing signal on the RST pin 
will definitely perform a reset of the microcontroller). Care has been taken in MSP430.DLL to 
increase the probability of a successful connection. Following the provided flow in Figure 3 offers 
highest probability of successfully attaching to a running target device. Figure 4 offers a code 
example for attaching to a running target. 

 

 

Figure 3 Attach to running target



MSP430 DLL Developer’s Guide 

12 MSP430 DLL Developer’s Guide 

 

long lVersion, state, pCpuCycles; 
DEVICE_T TargetDevice; 
 
// get device information - determine device id 
printf("MSP430_GetFoundDevice()\n"); 
if (MSP430_GetFoundDevice((char*)&TargetDevice, sizeof(TargetDevice.buffer)) == STATUS_ERROR) 
{ 
 printf("%s\n", MSP430_Error_String(MSP430_Error_Number())); 
 MSP430_Close(1);      
} 
 
// release the target from JTAG control 
printf("MSP430_Run(FREE_RUN, release from JTAG)\n"); 
if (MSP430_Run(FREE_RUN, TRUE) == STATUS_ERROR) 
{ 
 printf("%s\n", MSP430_Error_String(MSP430_Error_Number())); 
 MSP430_Close(1); 
} 
 
printf("MSP430_Close(VccOff = false)\n"); // close the interface connection 
if (MSP430_Close(FALSE) == STATUS_ERROR) // do NOT turn off Vcc power supply 
{ 
 printf("%s\n", MSP430_Error_String(MSP430_Error_Number())); 
 MSP430_Close(1); 
} 
 
Sleep(100);  // wait a few milliseconds 
 
// initialize the interface again 
printf("MSP430_Initialize()\n"); 
if (MSP430_Initialize("TIUSB", &lVersion) == STATUS_ERROR) 
{ 
 printf("%s\n", MSP430_Error_String(MSP430_Error_Number())); 
 MSP430_Close(1); 
} 
 
// attach to the running target with correct device string and/or device id 
printf("MSP430_OpenDevice(DeviceNameString,…,…, TargetDevice.id)\n”); 
if (MSP430_OpenDevice((char*)TargetDevice.string,””, 0, 0, TargetDevice.id) == STATUS_ERROR) 
{ 
 printf("%s\n", MSP430_Error_String(MSP430_Error_Number())); 
 MSP430_Close(1); 
} 
 
// check CPU state - state should be "RUNNING" 
printf("MSP430_State(...,stop = FALSE,...) -> check CPU state\n"); 
if (MSP430_State(&state, FALSE, &pCpuCycles) == STATUS_ERROR) 
{ 
 printf("%s\n", MSP430_Error_String(MSP430_Error_Number())); 
 MSP430_Close(1); 
} 

 

Figure 4 Code Example for “Attach to running target” – Open a debug session prior to utilizing this code 
(see. Fig. 2) 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 13 

Supporting more than one MSP-FET430UIF 

Till MSP430.DLL version 2.01.07.000 it was not possible to support more than one MSP-
FET430UIF tool on one PC system. The DLL would always try to open the first tool being 
detected. E.g. opening two instances of an IDE (or two different IDEs that make use of the DLL) 
and loading the DLL using MSP-FET430UIF would result in a conflict (even if more than one 
MSP-FET430UIFs have been connected to the PC system) as the DLL always tries to work with 
the first tool being detected on the USB bus. 

Two more API calls have been added to the DLL since version 2.01.08.000 to work around this 
conflict. The API calls are literally: 

• MSP430_GetNumberOfUsbIfs() 

• MSP430_GetNameOfUsbIf() 

In previous DLL releases MSP430_Initialize() should have been the function to be called at the 
very first beginning after loading the DLL (see Figure 1). Now the API calls listed above can be 
used to 

• determine how many MSP-FET430UIFs are connected to the PC system and 

• get the name (e.g. COM5, COM19,…) and connect-status (ENABLE/DISABLE) of the VCP 
assigned to a certain MSP-FET430UIF tool 

prior to MSP430_Initialize() being called. 

Having retrieved the information about how many and which VCPs are available on the PC 
system a dedicated MSP-FET430UIF tool can be employed by directly passing the VCP name 
to MSP430_Initialize(), e.g. MSP430_Initialize(“COM5”,…). 

Figure 5 shows the typical flow which is needed to get the needed information about available 
MSP-FET430UIFs. 

Figure 6 offers an example code for initializing multiple MSP-FET430UIFs one by one. 

Please also refer to the example project MultipleUifs for a possible application implementation 
proposal. 

 



MSP430 DLL Developer’s Guide 

14 MSP430 DLL Developer’s Guide 

MSP430_GetNumberOfUsbIfs(&Number)

Continue with application tasks

MSP-FET430UIFs

available ?

Number > 0 ?

no

yes

Loopcounter = 0

Increment Loopcounter by one.

Loopcounter >= Number ?

MSP430_GetNameOfUsbIf(Loopcounter,…,...)

Process information (Name, Status) retrieved from 

MSP430_GetNameOfUsbIf()

no

yes

 

Figure 5 Retrieve info about available MSP-FET430UIFs



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 15 

 
#include "stdio.h" 
#include "MSP430.h" 
 
long number, count, status, lVersion, lErrorNumber; 
char * name; 
 
// determine the number of connected UIFs 
printf("MSP430_GetNumberOfUsbIfs()\n"); 
if (MSP430_GetNumberOfUsbIfs(&number) == STATUS_ERROR) 
{ 
 printf("Error: Could not determine number of UIFs!\n"); 
 lErrorNumber = MSP430_Error_Number(); 
 printf("Reason: %s\n", MSP430_Error_String(lErrorNumber)); 
} 
else 
{ 
 printf("Found %d UIF(s).\n", number); 
 for(count = 0; count < number; count++) 
 { 
  // get the VCP name 
  printf("MSP430_GetNameOfUsbIf()\n"); 
  if (MSP430_GetNameOfUsbIf(count, &name, &status) == STATUS_ERROR) 
  { 
   printf("Error: Could not obtain VCP name for UIF %d.\n", count+1); 
   lErrorNumber = MSP430_Error_Number(); 
   printf("Reason: %s\n", MSP430_Error_String(lErrorNumber)); 
  } 
  else 
  { 
   // initialize the interface 
   printf("Initializing UIF @ %s.\n", name); 
   printf("MSP430_Initialize(UIF %d)\n", count+1); 
   if (MSP430_Initialize(name, &lVersion) == STATUS_ERROR) 
   { 
    lErrorNumber = MSP430_Error_Number(); 
    printf("Error: %s\n", MSP430_Error_String(lErrorNumber)); 
   } 
   else 
   { 
    printf("Success!\n"); 
 
    // commence with debug session start here... 
 
    // close the interface 
    printf("MSP430_Close()\n"); 
    MSP430_Close(1); 
   } 
  } 
 } 
} 

 

Figure 6 Code Example for communication with multiple MSP-FET430UIFs 



MSP430 DLL Developer’s Guide 

16 MSP430 DLL Developer’s Guide 

 

Configuring the JTAG protocol 

By default the DLL is configured to perform an automatic protocol scan to start communication 
with MSP430 devices. With introduction of the low pin count 2-wire JTAG protocol Spy-bi-Wire 
(SBW), another configuration mode was implemented in the DLL. The configuration mode is 
called INTERFACE_MODE (refer to MSP430.h file for details). One has to distinguish between 
four  different interface modes dependent on the desired JTAG protocol used for debugging the 
connected MSP430 derivative. 

• JTAG_IF : The normal standard 4-wire JTAG communication  

• SPYBIWIRE_IF: Spy-bi-Wire (2-wire) JTAG protocol (NOTE: only supported by MSP-
FET430UIF) 

• SPYBIWIREJTAG_IF : Standard 4-wire JTAG communication for MSP430 devices which 
also support Spy-bi-Wire (a special entry sequence is needed to switch these MSP430 
derivatives into 4-wire mode which cannot be applied to any MSP430 devices) 

• AUTOMATIC_IF : JTAG communication protocol is selected automatically by the DLL 
(default) 

If MSP430_Configure() is called to configure the JTAG protocol, it must be done before 
MSP430_OpenDevice() is called as it is shown in Figure 1. 

Speed up Flash Programming 

The API routines MSP430_Erase() and MSP430_Memory() enable manipulation of the target 
devices Flash Memory. By applying the DLL with an LPT port interface these routines make use 
of the target devices RAM. All content of the target devices RAM is preserved before the Flash 
manipulation and restored afterwards. This mechanism is applied that way to allow Flash 
Memory manipulation during an active debug session without corrupting any RAM content. 
Anyway, it takes perceivable time to preserve/restore RAM contents. Thus this mechanism 
might be considered to be not very useful under some circumstances, e.g. during an initial Flash 
Programming at the beginning of a debug session. 

Therefore the RAM preserve/restore mechanism can be disabled by an additional 
MSP430_Configure () function call. The configuration mode is called RAM_PRESERVE_MODE. 

The following sequence might be used, e.g. for an initial Flash Programming sequence: 

(1) MSP430_Configure(RAM_PRESERVE_MODE, DISABLE); 

(2) MSP430_Erase(ERASE_ALL,..,..); 

(3) MSP430_Memory(..., ..., ..., WRITE ); 

(4) MSP430_Memory(..., ..., ..., READ ); 

..... Flash Programming/Download finished 

(n) MSP430_Configure(RAM_PRESERVE_MODE, ENABLE); 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 17 

Controlling device program execution 

The MSP430.dll provides additional debugging functions to developers of third party tools for the 
MSP430. The debugging functions include execution control (free run, run to breakpoints, single 
step, state, stop, set breakpoint), device control (read/write registers, reset, clock configuration, 
device configuration), and low-level access to the advanced features of the Enhanced Emulation 
Module (EEM) that provides such features as complex breakpoints, trace buffers, etc.. The low-
level access to EEM registers (namely Read/Write EEM register) is basically kept in the DLL due 
to compatibility reasons. TI encourages developers to apply the Enhanced Emulation Module 
Access (EEM API) mentioned in the next section. TI reserves the right to remove low-level EEM 
access in future releases of the DLL with according notification to affected developers. 

 

Enhanced Emulation Module (EEM) Access – EEM API 

Additionally, the MSP430.dll provides an enhanced debug API that allows access to MSP430’s 
Enhanced Emulation Module on a higher application level than accessing EEM registers directly. 
Refer to source code of application examples, on how to apply the EEM API. Notice that some 
API functions are no longer allowed to be called in case EEM API is used. These functions are 
namely: 

• MSP430_Configure() with parameter 'mode' set to CLK_CNTRL_MODE 

• MSP430_Configure() with parameter 'mode' set to MCLK_CNTRL_MODE 

• MSP430_State() with parameter 'stop' set to FALSE 

• MSP430_EEM_Open() 

• MSP430_EEM_Read_Register() 

• MSP430_EEM_Read_Register_Test() 

• MSP430_EEM_Write_Register() 

• MSP430_EEM_Close() 

Refer to the detailed documentation in MSP430_EEM.h. 

 

Error handling 

Most functions of the MSP430.dll return an indication of success (STATUS_OK) or failure 
(STATUS_ERROR). If STATUS_ERROR is returned, MSP430_Error_Number() can be used to 
obtain a detailed error code. MSP430.h contains an enumeration of all error codes, and lists the 
error codes returned by each DLL function. MSP430_Error_String() will return the string 
corresponding to the error code parameter. 

STATUS_ERROR is returned at the first error condition. The DLL typically does not attempt to 
retry and/or recover from the error condition. It is the responsibility of the application to retry the 
failed operation, and to possibly implement some sort of “back-out” recovery mechanism. 



MSP430 DLL Developer’s Guide 

18 MSP430 DLL Developer’s Guide 

Miscellaneous 

The MSP430.dll is a partially intrusive tool; accessing the device via JTAG can affect the device 
(i.e. clocking the Watchdog mechanism). However, steps are taken within the DLL to minimize 
the effects upon the device caused by JTAG. Refer to the Notes: section of the function 
comments for function specific information (including known effects). 

Unless noted in the “Notes:” section of the function comments, the functions of the MSP430.dll 
do not assume or make use of any device resources (i.e. a reference crystal, registers, regions 
of memory, etc.). 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 19 

Supporting MSP-FET430PIF 

Tetradyne’s DriverX Parallel Port (LPT) Hardware Dr iver 

Tetradyne’s DriverX is used to control the PC’s parallel port. HIL.dll, described in the next 
section makes use of this kernel driver. Refer to Appendix A on how to install DriverX on a PC 
system. Normally the first call to MSP430_Initialize(‘LPTx’,…) installs DriverX on the system. 
Rebooting the system is required afterwards. 

Hardware Interface Layer (HIL) Library 

The MSP430.dll interfaces to the device’s JTAG pins using a set of functions encapsulated in 
another Dynamic Link Library called the Hardware Interface Layer [HIL.dll]. The HIL.dll provides 
a unified API for MSP430.dll which abstracts the peculiarities of the physical interface to the 
MSP430. The described software layer hierarchy permits the MSP430.dll to be used with any 
physical interface (that supports the required control of the JTAG pins) by providing a 
corresponding HIL.dll. A HIL.dll is supplied that controls the JTAG pins via a Texas Instruments 
FET Interface Module and the parallel port of a PC. However, the user may supply a functionally 
equivalent HIL.dll in order to interface the MSP430.dll to a different target environment. The 
HIL.dll also interfaces the MSP430.dll to timer functions of the host operating system. 

The following files are supplied in the HIL project folder: 

• HIL.h : This file is the header file for the HIL.dll, and provides the function prototypes, 
typedefs, #defines, and enumerations for the dll. This file is normally located in the same 
directory as the HIL source file, and should be #included by the HIL source file. This file is 
used during compile-time. As a check of the compliance of the HIL.dll functions to those 
required by MSP430.dll, do not modify this file. 

• HIL.def : This file specifies the name by and order in which the functions of the HIL.dll must 
be exported. This file is normally located in the same directory as the HIL source file, and 
should be added to the HIL project to affect the linker. 

• HIL.c : This file is the source for the HIL.dll. As supplied, HIL.c provides an interface to the 
device JTAG pins via the TI FET Interface Module and the PC parallel port. The PC parallel 
port is itself controlled via a third party driver (Tetradyne’s DriverX). HIL.c uses the “queued 
command” mechanism provided by DriverX for reasons of improved performance. Note: 
Texas Instruments does not provide the DriverX.h file required by HIL.c, or the DriverX 
library. 

Use HIL.c as a template when implementing a new HIL.dll. Each function specified in HIL.h must 
be implemented in the new HIL.dll, and must comply with the function prototype. 

The functions of the HIL.dll can be roughly partitioned as follows: 

• General control; these functions initialize, open, control, and close the interface: 
HIL_Initialize(), HIL_Open(), HIL_Connect(), HIL_Release(), HIL_Close(), HIL_TEST_VPP() 



MSP430 DLL Developer’s Guide 

20 MSP430 DLL Developer’s Guide 

• JTAG instruction and data transfer; these functions transfer JTAG instructions to the device, 
and data to and from the device: 
HIL_JTAG_IR(), HIL_JTAG_DR() 

• Device signal control; these functions control the JTAG and reset signals, and the device 
voltages: 
HIL_TST(), HIL_TCK(), HIL_TMS(), HIL_TDI(), HIL_TCLK(), HIL_RST(), HIL_VCC(), 
HIL_VPP() 

• Time delay and timing; these functions provide time delay and time delay measurement: 
HIL_DelayMSec(), HIL_StartTimer(), HIL_ReadTimer(), HIL_StopTimer() 

For a detailed discussion of the JTAG signals and signaling requirements (as required by 
HIL_JTAG_IR() and HIL_JTAG_DR()), refer to TI Application Report SLAA149 Programming a 
Flash-Based MSP430 Using the JTAG Interface. 

The supplied HIL.dll that interfaces to the JTAG pins via the TI FET Interface Module and the PC 
parallel port has the following limitations: 

• It is not possible to set the device Vcc to a specific value using HIL_VCC(); Vcc is set to the 
maximum voltage supported by the interface when a non-zero voltage is specified, and Vcc 
is set to zero when a zero voltage is specified. 

• It is not possible to set the device Vpp to a specific value using HIL_VPP(); Vpp is set to the 
maximum voltage supported by the interface when a non-zero voltage is specified, and Vpp 
is set to zero when a zero voltage is specified. 

As a result of the above two limitations, it is not possible to use MSP430.dll functions 
MSP430_VCC() to set the device Vcc and MSP430_Secure() to secure the device (i.e., “blow” 
the device security fuse). 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 21 

Supporting MSP-FET430UIF 

Virtual Com Port (VCP) Driver for MSP-FET430UIF 

MSP-FET430UIF uses a TUSB3410 device from TI for USB communication. The VCP driver is 
provided in two different versions. The more recent version is digitally signed and certified by 
Microsoft. The certification is available for four different MS-Windows platforms: XP32, XP64, 
Vista32 and Vista64. Since version 2.04.00.000 of the MSP430.dll both VCP drivers are 
supported. Previous MSP430.dll versions are only able to recognize and work with MSP-
FET430UIF tools which are installed with the older, not-certified version of the VCP driver. Refer 
to Appendix B for details and installation information.  

Enhancements over MSP-FET430PIF 

• Supports blowing of the JTAG fuse by calling MSP430_Secure(). 

• Supports setting of the target voltage between 1.7V to 3.6V using MSP430_VCC(). 

• Support for reading back currently set target Vcc using MSP430_GetCurVCCT(). 

• Detection and measurement of external target power supply by MSP430_GetExtVoltage(). 



MSP430 DLL Developer’s Guide 

22 MSP430 DLL Developer’s Guide 

MSP-FET430UIF Firmware Update Support 

With every new version of MSP430.dll the firmware of the MSP-FET430UIF JTAG interface 
needs to be updated accordingly. MSP430.dll includes a binary image of the corresponding 
MSP-FET430UIF firmware. Calling MSP430_FET_FwUpdate() as described in the flow chart in 
Figure 1 assures consistency between versions of MSP-FET430UIF firmware and the DLL 
applied on the PC. 
With this release the major DLL version has changed and the firmware now consists of a 
communication core and a JTAG stack which can be updated independently. Therefore it was 
necessary to extend the firmware update mechanism. As you can see in figure 7, 
MSP430_Initialize() returns either -3, -1 or the actual DLL firmware Version. 
 
In case MSP430_Initialize() returns -3, a major firmware version update is required. Afterwards 
call MSP430_FET_FwUpdate() to update the firmware through a DLL internal binary image, a 
given update file will be ignored. 
If MSP430_Initialize() returns -1, the UIF firmware is already updated to the major version, but 
either the communication core or JTAG stack does not match the DLL version. If required, the 
core, in any case, is updated through the DLL internal image. The JTAG stack can be updated 
through a ti-txt or intel-hex file by passing a file to MSP430_FET_FwUpdate(), otherwise an DLL 
internal update will be performed. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Firmware Update Flow 

No 

No 

Yes 

Yes 

Yes 

MSP430_Initialize(port, version) 

 
version = -3 

 
version = -1 

version = 
dll version 

MSP430_FET_FwUpdate() 

Indicates that UIF is 
version 2 and DLL is 
version 3 

Indicates that UIF 
communication core 
or JTAG stack is not 
up to date 

UIF is up to date 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 23 

 

Firmware update with Update-Tool 
 

To update the UIF firmware without an IDE use the command line based Update-Tool. 
The Update-Tool also provides the possibility of firmware up/downgrade between 
major firmware versions. 
Please refer to Appendix D  to determine if you are using an UIF with revision  1.3 because 
this requires an additional update step . 
 

 

Figure 8 Update-Tool 

 
Usage: 
 
updateTool –u UP: updates the UIF’s major firmware version (e.g. version 2 to 3) 
 
updateTool –u DOWN: downgrades UIF’s major firmware version through  
     the binary image stored in Uifv3Downgrader.txt 
 
updateTool –u INT: updates the UIF with the DLL internal firmware image 
 
 
Important:  Make sure that the CDC driver is already installed before performing a major 
firmware version update. Also a file called “CDC.log” with the content “True” must be in the 
same folder as the DLL, which indicates that the CDC driver was successfully installed. 
Otherwise the update process returns an update error. 
 



MSP430 DLL Developer’s Guide 

24 MSP430 DLL Developer’s Guide 

Additional update step for MSP-FET430UIF with hardw are revision 1.3 
 
After calling updateTool –u UP the update process starts and you can see the following 
command line window 
  

 
 
On finishing, the TUSB3410 should be reseted and the UIF show up as a CDC device. 
Due to the reason mentioned in Appendix D that is not possible, so it is necessary to disconnect 
the UIF and connect it again. 
After doing so, the update process continues. 
 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 25 

Supporting eZ430 emulator dongles 

There exist several different versions of the eZ430 emulator. 

• eZ430-F2013: The dongle appears almost identical as an MSP-FET430UIF. It requires the 
VCP driver which enumerates a virtual COM port on the host PC. By calling 
MSP430_GetHwVersion() one can distinguish between the two different tools. From a USB 
driver perspective they are identical. 

• eZ430-RF2500: The dongle enumerates as a Human Interface Device (HID) (e.g. like a 
mouse). The HID class driver is part of the Windows operation system, thus the 
enumeration does not require any user interaction. The HID interface is used for the JTAG 
communication to the target device. Beside the HID channel the dongle also tries to 
enumerate a Virtual Com Port (which is called MSP430 Application UART). Other than the 
VCP of MSP-FET430UIF (and eZ430-F2013) this port is based on Communication Device 
Class (CDC) driver. This CDC driver class is also part of the Windows operating system but 
it requires an INF file for installation. The provided INF file (430CDC.inf, to be found in folder 
Driver/Inf) is certified for MS-Windows operating systems XP32, XP64, Vista32 and Vista64. 
The folder Driver/Inf contains a subfolder PreinstalCDC. This subfolder contains an example 
source code that shows how to install the INF file on a MS-Windows PC. It is recommended 
to install the INF file like described in the example. If not done like that the Windows 
Hardware Wizard will pop up as soon as the user connects the tools to the PC. Afterwards 
the user has to manually point the Wizard to the correct location of the INF file. 

Other supported eZ430 tools that make use of the HID interface include the eZ430 Chronos or 
the Launchpad and the MSP-EXP430FR5739 FRAM Experimenter’s board, where the eZ 
emulator is onboard. 

http://focus.ti.com/docs/toolsw/folders/print/ez430-chronos.html
http://focus.ti.com/docs/toolsw/folders/print/msp-exp430g2.html
http://focus.ti.com/docs/toolsw/folders/print/msp-exp430fr5739.html


MSP430 DLL Developer’s Guide 

26 MSP430 DLL Developer’s Guide 

Application Examples 

The DLL Developer’s Package features a series of example projects to illustrate the usage of 
the DLL functions. After the build, the executables can be found in 
ApplicationExample/Executables. Refer to the source code for details on how to call DLL 
functions and correctly pass parameters to those functions. 

Example 

Example is an example project that demonstrates how the basic functions of the DLL are called 
to initialize the interface, identify the device, configure the device, manipulate the device memory 
(erase, program, verify, read), blow the device security fuse, reset the device, close the 
interface, and handle error conditions. Refer to the source file Example.c. 

ExampleDebug 

ExampleDebug is an example project that demonstrates how the functions of the DLL are called 
to initialize the interface, identify the device, configure the device, manipulate the device memory 
(erase, program, verify, read), read the device registers, set device breakpoints, run the device 
(free, with breakpoints, single step), reset the device, close the interface, and handle error 
conditions. Refer to the source file Example Debug.c. 

UifUpdate 

UifUpdate is an example project that demonstrates how to perform an MSP-FET430UIF 
firmware update by calling MSP430_FET_FwUpdate() including handling of the notify callback 
mechanism during the update process. Refer to the DLL API documentation of 
MSP430_FET_FwUpdate() for technical details. 

MultipleUifs 

MultipleUifs is an example project that demonstrates how to support multiple MSP-FET430UIF 
tools connected to one PC system. The example project comes along with a GUI that shows a 
possible support implementation. 

UseCases 

UseCases contains a set of subfolders, each containing a small example code project demonstrating a 
certain use case for the MSP430.dll. A use case usually builds to a single executable file which can be 
executed on the command line. It takes a set of standard, plus a set of use case specific (optional), 
command line arguments to perform certain actions. In the root directory of the use case MSP430 
family and/or device specific batch files can be found demonstrating possible command line 
invocations. The source code for the use case is located in the Src/Visual folder. Most of the use cases 
require an MSP430 target code which gets loaded through the MSP430.dll into the target devices’ 
memory. The source code for MSP430 target code is located in Src/Msp430. 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 27 

MSP430 Flasher 

The MSP430 Flasher gives an example of how to use the MSP430.dll in a simple console-based 
command line tool. It implements nearly all of the DLLs functions and can be used by calling the 
MSP430Flasher.exe with a series of parameters from a batch file. For a list of the available parameters 
and their descriptions refer to the MSP430 Flasher manual or the MSP430 Flasher Wiki page. 

For more detailed information on how to structure a DLL-based communication with an MSP430 
device, see the MSP430 Flasher source code in ApplicationExample/MSP430Flasher/Source.  

 

Appendix A. Installation of DriverX 

The supplied HIL.dll uses the DriverX product from Teradyne to interface to the parallel port of 
the PC. In order to demonstrate the example project, DriverX must be installed in the computer 
system as follows: 

NOTE: DriverX is currently not supported by Windows 7 – 64 bit. 

A.1 For Win95, 98, and ME machines: 

1. Copy the DriverX Windows kernel-mode driver, Driverx.vxd, to the \System subdirectory of 
the root Windows directory. 

2.  Create the following registry keys: 
 
[HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\VxD\DRIVERX] 
 "ErrorControl"=dword:00000001 
 "Start"=dword:00000002 
 "Type"=dword:00000001 
 
[HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\VxD\DRIVERX\FET] 
 "IgnoreConflicts"=dword:00000001 

A.2 For Win NT machines: 

1. Copy the DriverX NT kernel-mode driver, Driverx.sys, to the \System32\Drivers 
subdirectory of the root NT directory. 

2.  Create the following registry keys: 
 
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverX] 
 "ErrorControl"=dword:00000001 
 "Start"=dword:00000002 
 "Type"=dword:00000001 
 
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverX\Parameters] 
 
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverX\Parameters\FET] 
 "IgnoreConflicts"=dword:00000001 
 
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverX\Enum] 
 "0"="Root\\LEGACY_DRIVERX\\0000" 

http://processors.wiki.ti.com/index.php/MSP430_Flasher_-_Command_Line_Programmer


MSP430 DLL Developer’s Guide 

28 MSP430 DLL Developer’s Guide 

 "Count"=dword:00000001 
 "NextInstance"=dword:00000001 
 
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\EventLog\System\DriverX] 
 "TypesSupported"=dword:00000007 
 "EventMessageFile"="%SystemRoot%\System32\IoLogMsg.dll;%SystemRoot%\System32\Dri
vers\DriverX.sys" 

A.3 New Driver X Installation Instructions: 

1.  Replace: 
 - Driverx.sys  
 - Driverx.vxd 
with the new versions 

2.  Add Drvx40.dll to the 'Setup Files / Language Independent / windows..' folder 
within Install Shield 
Replace 
 - HIL.dll 
 - msp430.dll 
with the new versions 

3.  Add InstallDriverX function to install script. 

4.  Call InstallDriverX after the files have been copied. 
 

/*---------------------------------------------------------------------------*\ 
 * 
 * Function:    InstallDriverX 
 * 
 *  Purpose:    Install DriverX 
 * 
 *    Input: 
 * 
 *  Returns: 
 * 
 * Comments:     
\*---------------------------------------------------------------------------*/ 
   #define DLL_FILE  SUPPORTDIR^"Drvx40.dll" 
   prototype  Drvx40.HwConfigureDriver(); 
   prototype  Drvx40.HwConfigureParPort(LONG, LONG, BYREF LONG); 
                       //(DWORD nPort, DWORD fFlags, PDWORD pfOutFlags); 
   
function  InstallDriverX() 
   NUMBER  nResult; 
   BOOL    bDone, bDone1, bDone2, bDone3; 
   LONG    OutFlags; 
begin 
 
   // Load the dll into memory. 
   nResult = UseDLL (DLL_FILE); 
 
   // Call Install DriverX.  
   bDone = HwConfigureDriver(); 
 
   bDone1 = HwConfigureParPort(0, 1, OutFlags); 
   bDone2 = HwConfigureParPort(1, 1, OutFlags); 
   bDone3 = HwConfigureParPort(2, 1, OutFlags); 
 
   // Remove the dll from memory. 
   UnUseDLL (DLL_FILE); 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 29 

    
   return(bDone && (bDone1 || bDone2 || bDone3)); 
 
end;// of InstallDriverX() 
 
/*---------------------------------------------------------------------------*\ 
 * 
 * Function:    SetupRegistry2 
 * 
 *  Purpose:    Generates Registry Keys for Win 
 * 
 *    Input: 
 * 
 *  Returns: 
 * 
 * Comments:    Functional only when additional files on disk1: 
 *              - _INST32.EX_ 
 *              - _SETUP32.LIB (compressed with ICOMP) including 
 *                1) UNINST.EXE and 
 *                2) _ISRES.DLL renamed from _ISRES32.DLL 
\*---------------------------------------------------------------------------*/ 
 
function  SetupRegistry2() 
  STRING  szKey,szKey1,szClass,szKeyRoot,szNumName,szNumValue; 
 
begin 
        RegDBSetDefaultRoot( HKEY_LOCAL_MACHINE ); 
 
    //Key DriverX 
 
        if bWinNT then 
          szKey       = "SYSTEM\\CurrentControlSet\\Services\\DriverX";   // NT 
          szKey1      = "SYSTEM\\CurrentControlSet\\Services\\DriverX\\Parameters";   // NT 
        else 
          szKey1      = "System\\CurrentControlSet\\Services\\VxD\\DRIVERX";  // 95 + 98 
          szKey = szKey1; 
        endif; 
 
 
        szClass     = ""; 
 
        if ( RegDBCreateKeyEx( szKey, szClass ) < 0 ) then 
            MessageBox("Cannot create Key DriverX", WARNING); 
        endif; 
 
        szNumName   = "ErrorControl"; 
        szNumValue  = "1"; 
        if ( RegDBSetKeyValueEx( szKey, szNumName, REGDB_NUMBER, szNumValue, -1 ) < 0 ) then 
            MessageBox("Cannot set value ErrorControl", WARNING); 
        endif; 
 
        szNumName   = "Start"; 
        szNumValue  = "2"; 
        if ( RegDBSetKeyValueEx( szKey, szNumName, REGDB_NUMBER, szNumValue, -1 ) < 0 ) then 
            MessageBox("Cannot set value Start", WARNING); 
        endif; 
 
        szNumName   = "Type"; 
        szNumValue  = "1"; 
        if ( RegDBSetKeyValueEx( szKey, szNumName, REGDB_NUMBER, szNumValue, -1 ) < 0 ) then 
            MessageBox("Cannot set value Type", WARNING); 



MSP430 DLL Developer’s Guide 

30 MSP430 DLL Developer’s Guide 

        endif; 
 
 
    //Key FET in DriverX 
 
        szKey       = szKey1 + "\\FET"; 
        szClass     = ""; 
 
        if ( RegDBCreateKeyEx( szKey, szClass ) < 0 ) then 
            MessageBox("Cannot create Key FET", WARNING); 
        endif; 
 
        szNumName   = "IgnoreConflicts"; 
        szNumValue  = "1"; 
        if ( RegDBSetKeyValueEx( szKey, szNumName, REGDB_NUMBER, szNumValue, -1 ) < 0 ) then 
            MessageBox("Cannot set value IgnoreConflicts in LPT01", WARNING); 
        endif; 
 
 
    //Key DriverX in EventLog  (NT only) 
        if bWinNT then 
 
         szKey       = "SYSTEM\\CurrentControlSet\\Services\\EventLog\\System\\DriverX"; 
         szClass     = ""; 
 
         if ( RegDBCreateKeyEx( szKey, szClass ) < 0 ) then 
            MessageBox("Cannot create Key DriverX in EventLog", WARNING); 
         endif; 
 
         szNumName   = "TypesSupported"; 
         szNumValue  = "7"; 
         if ( RegDBSetKeyValueEx( szKey, szNumName, REGDB_NUMBER, szNumValue, -1 ) < 0 ) 
then 
            MessageBox("Cannot set value TypesSupported", WARNING); 
         endif; 
 
         szNumName   = "EventMessageFile"; 
         szNumValue  = 
"%SystemRoot%\\System32\\IoLogMsg.dll;%SystemRoot%\\System32\\Drivers\\DriverX.sys"; 
         if ( RegDBSetKeyValueEx( szKey, szNumName, REGDB_STRING_EXPAND, szNumValue, -1 ) < 
0 ) then 
            MessageBox("Cannot set value EventMessageFile", WARNING); 
         endif; 
 
         //LaunchAppAndWait ( "net" , "start driverx" , WAIT );                
 
        endif; 
 
end;// of SetupRegistry2() 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 31 

Appendix B. Installation of VCP for MSP-FET430UIF 

This document contains the installation and un-installation procedure of the MSP-
FET430UIF Driver on Windows XP (32Bit & 64 Bit), Windows Vista (32Bit & 64 Bit) and 
Windows 7 (32Bit & 64 Bit). The MSP-FET430UIF Driver is based on the 
TUSB3410/TUSB5052 Virtual COM port driver provided by Texas Instruments under TI’s 
non-cost license agreement and is adapted for use with MSP-FET430UIF according to 
USB/Serial Applications Using TUSB3410/5052 and the VCP Software  (SLLA170B). The 
dialog boxes shown below in this document indicate what will be seen when installing a 
MSP-FET430UIF JTAG Debug Interface which comes along with VID (Vendor Id): 0x0451 
and PID (Product Id): 0xF430. 

Important Note : Since MSP430.dll version 2.04.03.000 only one version of the VCP 
driver is provided with the Developer package. The installation of this new certified driver 
is much easier compared to the old non-certified version (not included in this packet). The 
installation requires running a driver installer, which is part of this packet on the PC. The 
operation system and all necessary settings are detected and set automatically by the 
driver installer. The installer contains driver for the MSP-FET430UIF, the eZ430-RF2500 
dongle and the DriverX for the TI MSP430 PIF Tool. 

 

 

Figure 9 Windows Device Manager (VCP) 

 



MSP430 DLL Developer’s Guide 

32 MSP430 DLL Developer’s Guide 

The following paragraphs describe installation/de-installation of the certified VCP driver 
Installation 

B.1 OS: Windows XP 32/64 Bit, Windows Vista 32/64 Bit and Windows 7  32Bit/64 Bit  

 To install the driver, run setup.exe, located at the directory 
\Driver\Usb\Certified\DriverInstall_3.2 on the installation media. This will install all the necessary 
files in the default directory C:\Program Files\Texas Instruments\MSP430\Drivers. The progress 
is shown by the following windows. 
 

 

Figure 10 Driver installation process 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 33 

 

Figure 11 Default install folder 

 

Figure 12 Select components for install 



MSP430 DLL Developer’s Guide 

34 MSP430 DLL Developer’s Guide 

 

Figure 13 Installation process 

 

Figure 14 Driver installation complete 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 35 

  

The device manager display for a successful installation is shown in Figure 14 Choose My 
Computer → Properties → Hardware →Device Manager to see this window. 

 

Figure 15 Windows Device Manager 



MSP430 DLL Developer’s Guide 

36 MSP430 DLL Developer’s Guide 

B.2 Driver Uninstallation: Windows XP 32/64 Bit, Windows Vista 32/64 Bit and Windows 7  
32/64 Bit  

To uninstall the drivers, run setup.exe, located at directory \Installer of the installation media. 
Note that when setup.exe is run for the first time, it pre-installs the drivers. Running setup.exe a 
second time uninstalls all of the driver files and cleans up the registry entries that were added 
during installation. 

The uninstaller displays the dialog box shown in Figure 15 below. Select “OK” to uninstall the 
drivers. 

 

Figure 16 Confirm uninstall 

To continue uninstallation, un-plug MSP-FET430UIF hardware. 

 

Figure 17 Driver uninstall 

Once the device is unplugged, the uninstaller proceeds to clean up all the files and registry 
entries added during installation. 

Click “Finish” to complete uninstallation. 



 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 37 

Appendix C. Installation of CDC for MSP-FET430UIF 
 
The UIF tries to enumerate a Virtual Com Port, which is based on Communication Device Class 
(CDC) driver. This CDC driver class is part of the Windows operating system but it requires an 
INF file for installation. 
After plugging in the UIF, Windows recognizes a new hardware called MSP-FET430UIF and the 
following dialog appears. 
 

 
 

Figure 18 New hardware 

 
Afterwards the hardware wizard opens a new dialog window. 
If CCS version 5 or IAR IDE is already installed, select “Install the software automatically”. 
 

 
 

Figure 19 Update Wizard 

 



MSP430 DLL Developer’s Guide 

38 MSP430 DLL Developer’s Guide 

 

Appendix D. Update MSP-FET430UIF with hardware revision 1.3 
 
 
If you are using a MSP-FET430UIF with hardware revision 1.3 your update process 
has one additional step, due to the fact that it is not possible to reset the TUSB3410 
USB port controller during a firmware update. 
Without a reset the TUSB can’t change the VCP protocol to CDC and afterwards install 
the new communication core and JTAG stack. So it is necessary to reset the device 
manually by disconnecting the UIF and connect it to the PC again. 
For IDE specific information on how to update an UIF with revision 1.3 please 
refer to the MSP-FET430UIF Debug FAQ (CCS > v5.1 and IAR EW > 5.40) 
 

 
First you have to make sure that you are using an UIF with hardware revision 1.3. 
As you can see in Figure 20 and Figure 21 revision 1.3 has a CE sign on the front 
and no label with a revision number on the rear side. 

 
 
 

 

Figure 20 UIF Revision 1.3 

 
 

 
 
 
 
 

http://processors.wiki.ti.com/index.php/MSP_Debug_Stack


 MSP430 DLL Developer’s Guide  

 MSP430 DLL Developer’s Guide 39 

 
 

 

Figure 21 UIF Revision 1.4 



MSP430 DLL Developer’s Guide 

40 MSP430 DLL Developer’s Guide 

 

A.1 References 
 

TUSB3410 RS232/IrDA Serial-to-USB Converter 
http://focus.ti.com/docs/prod/folders/print/tusb3410.html 

TI Virtual COM Port Windows Drivers and Firmware 
http://processors.wiki.ti.com/index.php/MSP430_JTAG_Interface_USB_Driver 

USB/Serial Applications Using TUSB3410/5052 and the VCP Software (SLLA170) 

http://focus.ti.com/docs/prod/folders/print/tusb3410.html
http://processors.wiki.ti.com/index.php/MSP430_JTAG_Interface_USB_Driver
http://focus.ti.com/general/docs/lit/getliterature.tsp?baseLiteratureNumber=slla170&track=no

	Abbreviations
	Developer’s Package Folder and File Structure
	Using MSP430 DLL
	General application and device handling
	Attach to a running device
	Supporting more than one MSP-FET430UIF
	Configuring the JTAG protocol
	Speed up Flash Programming
	Controlling device program execution
	Enhanced Emulation Module (EEM) Access – EEM API
	Error handling
	Miscellaneous

	Supporting MSP-FET430PIF
	Tetradyne’s DriverX Parallel Port (LPT) Hardware Driver
	Hardware Interface Layer (HIL) Library

	Supporting MSP-FET430UIF
	Virtual Com Port (VCP) Driver for MSP-FET430UIF
	Enhancements over MSP-FET430PIF
	MSP-FET430UIF Firmware Update Support
	Firmware update with Update-Tool
	Additional update step for MSP-FET430UIF with hardware revision 1.3

	Application Examples
	Example
	ExampleDebug
	UifUpdate
	MultipleUifs
	UseCases
	MSP430 Flasher

	Appendix A. Installation of DriverX
	A.1 For Win95, 98, and ME machines:
	A.2 For Win NT machines:
	A.3 New Driver X Installation Instructions:

	Appendix B. Installation of VCP for MSP-FET430UIF
	B.1 OS: Windows XP 32/64 Bit, Windows Vista 32/64 Bit and Windows 7 32Bit/64 Bit
	B.2 Driver Uninstallation: Windows XP 32/64 Bit, Windows Vista 32/64 Bit and Windows 7 32/64 Bit

	Appendix C. Installation of CDC for MSP-FET430UIF
	Appendix D. Update MSP-FET430UIF with hardware revision 1.3

